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24 Abstract:

25 In this article, we introduce the R Air Quality Evaluation package AQEval. AQEval was 
26 developed for use by those tasked with the routine detection, characterisation and 
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27 quantification of discrete changes in air quality time-series, such as identifying the 
28 impacts of air quality policy interventions. The main functions use break-point/segment 
29 (BP/S) methods to first detect (as break-points) and then characterise and quantify (as 
30 segments) discrete changes in air quality time-series. Here, the objective is to 
31 introduce the main AQEval functions that provide robust and conservative estimates 
32 of change for new users, and a work-flow of methods and work-horse functions for 
33 those looking to fine-tune methods, e.g. through BP/S model optimisation and 
34 environmental signal isolation methods such as deseasonalisation, deweathering, and 
35 background subtraction.
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38

39 1. Introduction:

40 Various change detection methods have been developed to investigate discrete 
41 changes in a wide range of time-series (see e.g. Reeves et al, 2007; Truong at al, 
42 2020), and several R (R Core Team, 2020) packages have been produced for third-
43 party use of related methods, e.g. bcp (Erdman & Emerson, 2007), changepoint (Killick 
44 et al, 2016), segmented (Muggeo, 2008), and strucchange (Zeileis et al, 2002).

45 So, why build a package specifically for air quality time-series change point analysis?

46 Authorities responsible for air quality management activities are typically required to 
47 implement and evaluate the air quality interventions they adopt (Public Health 
48 England, 2019). These interventions are often costly, disruptive, and even unpopular 
49 (Glazener & Khreis, 2019). Furthermore, robust confirmation of associated benefits is 
50 often hindered by the inherent variability of air quality data (Kelly et al, 2011), the 
51 influence of meteorology (Pearce et al, 2011; Grange & Carslaw, 2019), and the 
52 challenges of isolating one of several air pollution inputs at a monitoring site (Jones et 
53 al, 2012). Discrete change detection methods have previously been applied to the 
54 detection of large changes in air quality time-series Carslaw et al, 2006), and with, 
55 additional signal isolation, smaller changes associated with more modest interventions 
56 (Carslaw & Carslaw, 2007). 

57 Those tasked with routine intervention assessment (e.g. local authority and 
58 government analysts, and those in transport planning consultancies who contract to 
59 government agencies) are typically highly skilled in a wide range of air quality 
60 monitoring and assessment activities, but are, realistically, unlikely to have the time 
61 and funding to develop in-house expertise in such specialist software. That said, many 
62 are already familiar with and using the R openair package (Carslaw & Ropkins, 2012).  
63 openair was developed specifically to work with the types of air quality data routinely 
64 collected by local authorities for assessment of regulatory air quality standards. It 
65 includes multiple functions for the routine analysis and visualisation of air quality data, 
66 including trend analysis using Thiel-Sen methods, but not the investigation and 
67 measurement of discrete changes in air quality time-series. 
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68 So, the key objectives in building AQEval were: 

69  To provide air quality professionals with an open package for routine air quality 
70 change point detection, characterisation and quantification, that facilitated 
71 access to such methods; And, 
72  To configure functions to handle air quality data in familiar formats using 
73 openair-like coding conventions to reduce the learning-curve associated with 
74 learning new software. 

75 As part of the package development process, AQEval has already been used in two 
76 reported studies, Ropkins & Tate (2021) and Ropkins et al (2022), and this article 
77 provides an introduction to and discussion of associated package functions.

78

79 2. Package and Data Sources:

80 The AQEval package is freely available under General Public License (GPL) via 
81 conventional on-line R archives:

82  The latest (stable) release version of AQEval is on the Comprehensive R 
83 Archive Network (CRAN) at https://CRAN.R-project.org/package=AQEval; 
84 And,
85  The developers’ version and code are publicly available on GitHub at 
86 (https://github.com/karlropkins/AQEval). 

87 The release version of AQEval can be installed by download from R using the 
88 command install.packages("AQEval"), or as described in Appendix A if you are 
89 installing the developers’ version or an AQEval (.zip or .tar.gz) package bundle.

90 Once installed, AQEval can be loaded conventionally within an R session:

91 R> require(AQEval) # or library(AQEval)

92

93 2.1. Data Sources:

94 All data sets used in this article are 1998 to 2005 1-hour resolution time-series of air 
95 quality and meteorological data, typical of that routinely collected and archived by air 
96 quality professionals as part of, e.g. regulatory air quality monitoring activities in the 
97 UK. These data sets are summarised as follows: 

98  aq.my1 airborne nitrogen dioxide (NO2), reported in μg.m−3 from the London 
99 Marylebone Road monitoring station, and stored in the Automatic Urban and 

100 Rural Network (AURN) archive (AURN identifier code MY1). The MY1 site is 
101 located at one of busiest multi-lane inner city roadsides in the UK. 
102  aq.ea2 NO2 (μg.m−3), wind speed (m.s−1) and wind direction (degrees relative 
103 to North) from the Ealing Acton Town Hall station, and stored in the King’s 
104 College London (KCL) network archive (KCL identifier code EA2). EA2 is also 
105 an urban roadside, but at a less heavily trafficked site by comparison to MY1.
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106  aq.kc1 NO2 (μg.m−3) from the Kensington and Chelsea North Kensington 
107 Station, and stored in the KCL network archive (KCL identifier code KC1). KC1 
108 is an urban background site, so more isolated from traffic emissions than the 
109 other two sites.

110 Although AQEval was developed with users of these and other similar archives in 
111 mind, there is no reason it cannot be used with any openair-friendly data. Typically, 
112 the data should be a single data frame (or similar object class), with a ‘tidy’ layout (as 
113 described in Wickham, 2014). So, each time-series should be included as a discrete 
114 column and each row should only contain simultaneous measurements. Although 
115 there are no restrictions to the types of data that can be included, one column should 
116 contain a conventional (POSIX class) time-series of date/time stamps and be named 
117 date so opeanir and AQEval functions can easily identify it. Likewise, wind speed and 
118 direction time-series should be named ws and wd, respectively.

119 See Ropkins and Carslaw (2012) for further discussion of openair-friendly data 
120 structures and Appendix B for example data sources.

121

122 2.2. Other Packages used in Examples:

123 As part of the demonstration of typical AQEval function usage, we also use several 
124 functions from other packages:

125  dplyr we use dplyr functions and syntax for general data manipulation 
126 (Wickham et al, 2021). Although these are not the only options for similar pre-
127 processing within R, arguably, code naming and structuring is highly intuitive 
128 and easier for those new to R to follow and apply (Broatch et al. 2019).
129  openair::timeAverage we use openair function timeAverage to aggregate data 
130 sets by different time periods, e.g. to convert example 1-hour resolution data 
131 sets to 1, 3, 4 day or week (mean average) resolution data sets. Again, this is 
132 not the only option for similar pre-processing, but this is recommended here 
133 especially if data sets contain wind speed and direction data. See ?timeAverage 
134 in openair documentation for further details.
135
136 R> require(dplyr)
137 R> require(openair)
138

139 3. AQEval:

140 The AQEval Break-Point/Segment (BP/S) methods typically involve three steps: 
141 finding possible break-points, selecting the most likely break-points, and then 
142 quantifying these as either break-points or break-segments. The main package 
143 functions, quantBreakPoints and quantBreakSegments, are described in Section 3.1. 
144 to help practitioners getting started using the package and to introduce associated 
145 analytical strategies. Then, the workflow and options for those wanting to refine default 
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146 BP/S procedures are discussed in Section 3.2, and additional pre-processing options 
147 for those wanting to investigate smaller discrete changes in more complex time-series 
148 are discussed in Section 3.3.

149  

150 3.1. Break-Points/Segments: 

151 To find and quantify break-points, we employ functions based on the strucchange 
152 methods of Zeileis and colleagues (Zeileis et al. 2002, 2003, 2008) and independent 
153 change detection model testing as described in Section 3.2. As in most change 
154 detection strategies, strucchange adopts a rolling-window approach, assuming the 
155 first window (or data subset) is without change, building a statistical model of that, 
156 advancing the window, building a second model and comparing these, and so on, to 
157 identify most likely points of change in a larger data-series. The strucchange methods, 
158 however, test change using a statistical measure of difference between linear 
159 regression models of these windows, to provide a robust prediction of discrete change 
160 even when applied to time-series that are also subject to more gradual and persistent 
161 change (Figure 1). While no current change/break-point method completely prevents 
162 false-positives and false-negatives, this approach means strucchange is arguably 
163 better suited to use with air quality time-series, where changes rarely occur in isolation, 
164 than change detection methods based on assumptions of discrete static states before 
165 and after change events.

166
167 Figure 1: The strucchange break-point detection strategy. Here, TW0 is the initial ‘no-
168 change’ time-window, and this and all subsequent rolling time-windows are compared 
169 with the next, applying F-Statistics and the NULL hypothesis that the linear model of 
170 each is not significantly different to the next.

171 The quantBreakPoints formal argument structure is: 
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172 quantBreakPoints(data, pollutant, breaks, ylab = NULL, xlab = NULL, pt.col = 
173 c("lightgrey", "darkgrey"), line.col = "red", break.col = "blue", show = c("plot", 
174 "report"), ...) 

175 Where data is the data source, typically an openair-friendly data.frame or 
176 similar, pollutant is the name of the data time-series to be analysed. All other 
177 arguments are optional and include: xlab and ylab, which reset x- and y-axis 
178 labels if alternative labelling is required; pt.col, line.col and break.col which set 
179 the plot point, trend line and break-point colours; And, show sets the shown 
180 elements of the function output, by default the analysis report and plot.

181 To break-point test and quantify the aq.my1 NO2 time-series at one-day resolution, we 
182 first average the 1-hour resolution data, then use the quantBreakPoints call1: 

183 R> aq.my1.day <- timeAverage(aq.my1, "day") 

184 R> quantBreakPoints(aq.my1.day, "no2",  

185  +           ylab="AURN Marylebone Road no2 [ug/m3] \n Break-Points") 

186

187 The default (break-point) plot output is shown in Figure 2 and the local report, printed 
188 to the R console, is: 

189 Using 1 of 2 suggested breaks: 2

190 2003-02-05 (2003-01-14 to 2003-02-11)

191 82.66->112.4;29.69 (36%)

192
193 Figure 2: Marylebone Road 1998 to 2005 NO2 time-series quantBreakPoints analysis 
194 using default setting.

1 The ylab argument is optional, but is include as an example of routine plot annotation.
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195

196 We are currently break-testing this data at one-day resolution because studies suggest 
197 that it provides a good compromise between processing speed and accuracy when 
198 working with several years of data (see e.g. Ropkins & Tate, 2021, and Ropkins et al, 
199 2022). Most method evaluation to-date has been on time-series of similar lengths but 
200 this is not a specific requirement and other time-scales can also been studied. For 
201 example, in recent work we have also applied the methods to much shorter time-
202 series, e.g. several months during the COVID-19 related lockdown, and early out-
203 comes from this work suggest there may be advantages to working with data of 4-hour 
204 resolution and smaller time windows, when working with time-series of such lengths. 
205 Similarly, other analysis steps, e.g. signal isolation that may make use of hour-of-day 
206 measurements (see e.g. Section 3.3), may be better applied at the supplied 1-hour 
207 resolution.

208 This quantBreakPoints analysis shows two potential break-points were identified, but 
209 that a model applying only the second, occurring 2003-02-05 (95% confidence range 
210 2003-01-14 to 2003-02-11), was considered most likely, and that it associated with an 
211 estimated discrete NO2 increase of ca 30 µg.m−3 (from 82.66 to 112.4 µg.m−3) or 36%. 

212 Options to modify default break-point selections are discussed in Section 3.2.

213 Although this article is intended as an introduction to AQEval rather than an analysis 
214 of air quality in London between 1998 and 2005, it is perhaps worth noting that others, 
215 e.g. Carslaw and Carslaw (2007), have linked NO2 increases at about these times with 
216 the introduction of EURO III vehicle technologies and associated London bus fleets 
217 upgrades.

218 Break-point detection methods assume an instantaneous switch from one set of 
219 conditions to another, and break-point quantification tends to be most reliable when 
220 the investigated changes tend towards this situation. However, few environmental 
221 changes are ever as rapid. The introduction of a cleaner fleet of vehicles, for example 
222 buses, often takes place through a series of phases, as newer, cleaner buses are 
223 delivered and take over services route-by-route. So, while break-point methods tend 
224 to be good at spotting where changes happen and providing an initial estimate of 
225 number and magnitude events, they are less reliable when it comes to more 
226 comprehensively characterising that change, especially if the change is more gradual. 
227 With this in mind, AQEval includes a second break quantification function, 
228 quantBreakSegments, which uses break-points identification as a starting-point but 
229 then tests the areas about these using the segmented methods of Muggeo (2003, 
230 2008, 2017) to generate a rate-of-change model of the regions about the break-points 
231 (Figure 3).
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232
233 Figure 3: The AQEval Break segment fitting strategy. Here, the break-point (top black 
234 solid line) and confidence intervals (dotted lines) detected using strucchange methods 
235 are used as the initial segment ranges (red arrows), and segmented methods are then 
236 used to iteratively search about these (faded red lines) to build a break-segment model 
237 of associated change.
238
239 quantBreakSegments is applied in a similar fashion to quantBreakPoints, and tests 
240 potential breakpoints using the same methods but then generates a region of most 
241 likely change (or segment) model, assuming (2 × breaks) + 1) segments:

242 R> quantBreakSegments(aq.my1.day, "no2",

243 +           ylab="AURN Marylebone Road no2 [ug/m3] \n Break-Segments")

244

245 The break-segment plot output is shown in Figure 4 and the R console report is: 

246 Using 1 of 2 suggested breaks: 2

247 1998-01-01 to 2003-01-11 (1836)

248 95.26->80.71;-14.55 (-15.28%)

249 2003-01-11 to 2003-02-19 (39)

250 80.71->105.9;25.17 (31.19%)

251 2003-02-19 to 2005-12-31 (1046)

252 105.9->115.3;9.371 (8.851%)

253
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254
255 Figure 4: Marylebone Road 1998 to 2005 NO2 time-series quantBreakSegments 
256 analysis using default setting.
257
258 Here, the break-segment model suggests a general decrease 1998 to 2002 (ca. 15% 
259 over 5 years), then a rapid step-change increase January to February 2003 (31% in 
260 about 1 month), followed by a more gradual increase March 2003 to start of 2006 (ca. 
261 9% over 3 years). In this case, the break-segment associated with the main change 
262 event aligns very closely with the break-point confidence intervals (that does not 
263 always happen) and has a slightly lower magnitude (31%). 

264 Because the segmented model allows for more freedom when fitting trends before and 
265 after the break-point event, it also suggests a more pronounced difference in trends 
266 before and after the region of change.
267
268 3.2. Workflow for Model Refinement

269 quantBreakPoints and quantBreakSegments apply a find > test > quantify analysis 
270 workflow: first finding potential break-points, then testing models using different 
271 combinations of these potential break-points, before quantifying a ‘best case’ using 
272 break-point and break-segment models, respectively. Users new to AQEval may 
273 prefer to leave this workflow to the code. However, users with knowledge of the data 
274 sets and/or local environment may prefer to review each of the steps and provide 
275 expert input. Those wishing to do so, can work with the full Break function sequence.

276 findBreakPoints uses the strucchange methods of Zeileis and colleagues (Zeileis et 
277 al. 2002, 2003) to identify potential change points within the supplied pollutant time-
278 series. The formal argument structure is:

279 findBreakPoints(data, pollutant, h = 0.15, ...)

280 Where data and pollutant are as above, and addition argument h is the time-
281 window size expressed as a proportion of the pollutant time-series length, so 
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282 default 0.15 is equivalent to 15% of the aq.my1 NO2 time-series in the workflow 
283 example:

284 R> bpts <- findBreakPoints(aq.my1.day, "no2")

285 The function includes missing data handling based on Zeileis (2017) and outputs a 
286 data.frame of identified break-points, assigned as bpts in the example, which the user 
287 can review, test or manually modify before passing on as argument breaks.

288 Independent break-point testing can be done using testBreakPoints, formal structure:

289 testBreakPoints(data, pollutant, breaks, ...)

290 For example:

291 testBreakPoints(aq.my1.day, "no2", bpts)

292 This expects data, pollutant and the output of findBreakPoints and identifies likely 
293 breakpoints using step-wise testing (Table 1):

294

295 Table 1: Marylebone Road 1998 to 2005 NO2 time-series break-point test results (see 
296 main text for interpretation).  

Element(s) breaks significant Adjusted R2 suggest

1 2 1+2 FALSE NA

2 1 2 TRUE 0.1206 (<-)

3 1 1 TRUE 0.08388

4 0 NA FALSE NA

297

298 The initial (all break-points) model is accepted if it is statistically valid (or more 
299 specifically if all terms associated with individual break-points were all statistically 
300 significant, at p<0.05). If not, all model combinations discarding one of the initial break-
301 points are built, tested and compared, and the statistically valid model with the highest 
302 correlation (all break-points individually statistically significant, p<0.05 and highest R) 
303 is accepted, or the process is repeated until a statistically valid model is obtained or 
304 all break-points were rejected. In this case, a one break-point model, using only the 
305 second of the proposed break-points, is recommended.

306 This step is included as an additional test of the potential break-points identified using 
307 strucchange Bayesian Information Criterion (BIC) testing methods, rather than an 
308 alternative. Additional tests were investigated in light of concerns raised about BIC by 
309 stucchange’s authors (Zeileis et al. 2003), and the current additional method was 
310 selected on the basis of performance in simulation testing. That said, at this stage, this 
311 is presented as an empirical solution and arguably more work may yet be required on 
312 break-point selection.
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313 The selected breaks can then be passed on to either of the quantification functions 
314 along with data and pollutant for either break-point or break-segment quantification:

315

316 R> #quantify break-points

317 R> ans <- quantifyBreakPoints(aq.my1.day, "no2", bpts)

318 R> #to use all proposed break-point or

319 R> #replace bpts with bpts[n:m,] or slice(bpts, n:m)

320 R> #to specify n to m break-points, etc

321 R> #for example bpts[2,] if using test recommendation

322

323 R> #quantify break-segments

324 R> ans <- quantBreakSegments(aq.my1.day, "no2", bpts)

325 R> #to use all proposed break-point or

326 R> #replace bpts with bpts[n:m,] or slice(bpts, n:m)

327 R> #to specify n to m break-points, etc

328 R> #for example bpts[2,] if using test recommendation

329

330 Both functions also allow some back passing of arguments. For example, if h is 
331 included in either quantification function call, it is passed back to findBreakPoints and 
332 overrides the default. Likewise, the extra argument test=FALSE can be used to pass 
333 all findBreakPoints detected break-points directly to the quantification function without 
334 local testBreakPoints testing. So, for example, the previous analysis could be simply 
335 modified to include all proposed break-points:

336 R> ans <- quantBreakSegments(aq.my1.day, "no2", test=FALSE,

337 +            ylab="AURN Marylebone Road no2 [ug/m3]

338 +            Break-Segments, using all proposed breaks")

339 Associated outputs are the break-segment plot shown as Figure 5 and the R console 
340 report:

341 Using all 2 suggested breaks

342 building 5 segments

343 1998-01-01 to 2000-07-14 (925)

344 90.49->93.53;3.041 (3.36%)

345 2000-07-14 to 2002-02-26 (592)

346 93.53->78.01;-15.52 (-16.59%)
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347 2002-02-26 to 2003-01-03 (311)

348 78.01->82.65;4.635 (5.942%)

349 2003-01-03 to 2003-03-05 (61)

350 82.65->106.3;23.63 (28.6%)

351 2003-03-05 to 2005-12-31 (1032)

352 106.3->115.1;8.846 (8.323%)
353

354
355 Figure 5: Marylebone Road 1998 to 2005 NO2 time-series quantBreakSegments 
356 analysis using all proposed break-points (test=FALSE).

357

358 Here, both proposed break-points are used generating 5 segments, and the earlier 
359 segment, associated with the break-point rejected by testBreakPoints, suggests a 
360 smaller and shallower decrease (15.5 µg.m−3; 16.6 %), over about a year and a half 
361 (2000-07-14 to 2002-02-26) ahead of the main change event, an increase in early 
362 2003 (29% 2003-01-03 to 2003-03-05) (Figure 5) highly similar to that seen in the 
363 previous analysis (cf Figures 4 and 5). Although, this earlier change is considered 
364 much less likely, it is maybe worth noting that this was about the time EURO 3 
365 passenger car regulations were introduced and was a decrease, while the main more 
366 definite event was an increase and arguably better aligns with later changes in larger 
367 vehicle fleet regulations. Here, we also catch the quantBreakSegment output as ans. 
368 Outputs from both quantification functions can be captured in this fashion if expert 
369 users would like to explore the analyses further. (Please see AQEval package and the 
370 project website documentation for further details).

371

372 3.3. Local Signal Isolation
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373 The methods work well in the above example because the changes are relatively large 
374 and other contributions to measurement variance are relatively small. In other cases, 
375 e.g. at sites with smaller contributions from road traffic, other contributions, e.g. the 
376 variance associated with weather conditions and contributions from other sources may 
377 hinder the detection of break-points associated with local events. If we look at the NO2 
378 time-series from the nearby Ealing site for the same period, we see:

379 R> #convert Ealing 1-hour data to 1-day average

380 R> aq.ea2.day <- timeAverage(aq.ea2, "day")

381 R> #Ealing break-points, using default settings

382 R> quantBreakPoints(aq.ea2.day, "no2",

383 +            ylab="KCL Ealing Acton Town Hall no2 [ug/m3] 

384 +            Break-Points")

385 Associated outputs are the break-point plot shown as Figure 6 and the Console report:

386 Using 3 of 4 suggested breaks: 1,2,4

387 1999-09-22 (1999-04-06 to 2000-04-18)

388 65.33->49.77;-15.56 (-24%)

389 2001-05-25 (2001-01-19 to 2001-09-30)

390 59.68->48.41;-11.27 (-19%)

391 2003-12-19 (2003-08-29 to 2004-05-11)

392 62.72->50.83;-11.89 (-19%)
393

394
395 Figure 6: Ealing Acton Town Hall 1998 to 2005 NO2 time-series quantBreakPoints 
396 analysis using default setting.

397
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398 Here (Figure 6), NO2 levels are lower and quantBreakPoints detects multiple possible 
399 breakpoints. However, these break-points are also almost regularly spaced out across 
400 the timeseries, generating a ‘saw-tooth’ pattern and very little net change across the 
401 full time-period, suggesting some degree of periodicity in the major source of change. 
402 Here it is perhaps worth noting that we would expect an environmental time-series to 
403 tend towards a regular series of break-points rather than exhibit exact regularly. For 
404 example, the change series here is not exactly yearly for several reasons:

405  By default, we are applying a break-window of 15% (h=0.15), and that sets the 
406 window larger than one year on time-series of this size which may 
407 obscure/merge some changes happening at lower time resolutions.
408  We are unlikely to ever see a perfect seasonal effect, i.e. an absolute 
409 association to day-of-year and exactly regular sequence of multi-year break-
410 points, because the sources of seasonal variance are factors like the weather 
411 which, although closely associated with time-of-year, never themselves exhibit 
412 a perfect association with calendar date. So, often such events are easier to 
413 spot in ambient data using break-points rather than break-segments, which 
414 tend to emphasise the differences in scale of the events rather than their 
415 regularity-of-occurrence.
416

417 We can investigate this using different break-window sizes and time-series data 
418 ranges. For example, by increasing h so the time-window is much larger than one 
419 year, we can sometimes mask such seasonal (or near-seasonal) contributions if the 
420 change is towards the middle of our study time range (Figure 7):

421 R> #Ealing break-points, using longer time-window, h=0.3

422 R> quantBreakPoints(aq.ea2.day, "no2", h=0.3,

423 + ylab="KCL Ealing Acton Town Hall no2 [ug/m3]

424 + Break-Points (h=0.3)")

425 Associated outputs are the break-point plot shown as Figure 7 and the Console report:

426 Using 1 of 2 suggested breaks: 2

427 2002-09-25 (2002-06-02 to 2003-01-07) 49.05->62.13;13.09 (27%)
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428
429 Figure 7: Ealing Acton Town Hall 1998 to 2005 NO2 time-series quantBreakPoints 
430 analysis using larger time-window (h=0.3).
431

432 Similarly, by reducing h so the time window is less than one year and removing the 
433 break-point testing step, so we can see all proposed changes, we can enhance the 
434 detection of seasonal break-points (Figure 8)2:

435 Please note: This will take a while...

436 R> #Ealing break-points, using shorter time-window, h=0.05

437 R> #and all proposed breaks

438 R> quantBreakPoints(aq.ea2.day, "no2", h=0.05, test=FALSE,

439 +             ylab="KCL Ealing Acton Town Hall no2 [ug/m3]

440 +             Break-Points (h=0.05), using all proposed breaks")

441 Associated outputs are the break-point plot shown as Figure 8 and the Console report:

442 Using all 6 suggested breaks

443 1999-10-29 (1999-09-07 to 2000-01-15)

444 59.53->51.76;-7.775 (-13%)

445 2000-11-12 (2000-09-15 to 2000-12-21)

446 51.39->60.7;9.302 (18%)

447 2001-05-25 (2001-04-25 to 2001-07-01)

448 60.67->49.36;-11.31 (-19%)

449 2002-09-24 (2002-08-26 to 2002-10-19)

2 Please note, If you are running the code yourself, this will take a while...
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450 48.82->62.57;13.75 (28%)

451 2003-12-19 (2003-10-25 to 2004-03-22)

452 62.58->54.41;-8.174 (-13%)

453 2005-08-05 (2005-05-24 to 2005-09-11)

454 54.04->64.09;10.05 (19%)

455
456 Figure 8: Ealing Acton Town Hall 1998 to 2005 NO2 time-series quantBreakPoints 
457 analysis using smaller time-window (h=0.05) and all proposed break-points 
458 (test=FALSE).
459

460 Here, we see a pronounced cyclic up/down sequence to the proposed break-points, 
461 again not exactly regular but arguably consistent with annual meteorological cycles 
462 over a series of years in which, in terms of NO2 air pollution, some were worse than 
463 others.

464 Various signal isolation strategies have been used to enhance components-of-interest 
465 within environmental time-series ahead of analyses:

466  Deseasonalisation The removal of variance associated with regular frequency 
467 cycles within a time-series, e.g. hour-of-day, day-of-week, and week-of-year 
468 cycles (see e.g. Kendall and Stuart 1977). These are strictly proxies for 
469 environmental contributions varying at about these time-scales. The trends they 
470 map onto are not entirely regular but seasonal terms provide a practical 
471 alternative where more direct measures are not available and the analysed 
472 time-series are several times longer than the frequency cycles being 
473 subtracted. They can also be readily coded using date time-series of openair-
474 friendly datasets.
475  Deweathering The removal of variance associated with changes in 
476 meteorological conditions, such as wind speed and direction, air temperature 
477 and humidity (see e.g. Kuebler et al. 2001, Henneman et al. 2015). Sometimes 
478 referred to as ‘weather normalisation’ or ‘meteorological detrending’ in the 
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479 environmental research literature, these tend to be more direct and effective 
480 than seasonal terms where interfering variance is predominately weather 
481 driven, but requiring additional data, e.g. time-series of meteorological records.
482  Background Corrections The removal of variance associated with (or direct 
483 subtraction of) levels measured at local background sites or predicted based 
484 on background modelling (see e.g. Stedman et al. 2006, Sayegh et al. 2016). 
485 For local processes, these can provide an enhanced measure of the 
486 foreground, often called the local ‘increment’ in the environmental research 
487 literature. The approach has repeatedly been proven highly effective for the 
488 quantification of roadside and urban increments, but is highly sensitive to the 
489 representativeness of the background data.
490  Filtering and Conditioning The isolation of variance associated with indicators 
491 of the source-of-interest, e.g. source marker species or species ratios (see e.g. 
492 Cass 1998, Watson et al. 2008) or the removal of measurements when 
493 contributions from source-of-interest were expected to be minimal, e.g. up wind 
494 of a fixed source or out of operating hours of an industrial source (see e.g. 
495 Malby et al. 2013).

496 Here, we have divided these into four classes for the purposes of discussion. However, 
497 it is worth noting that these approaches are more often used in combination, with users 
498 selecting combinations based on the quality and representiveness of accessible local 
499 data. 

500 To illustrate such environmental time-series signal isolation, we apply a 
501 deseasonalisation and deweathering (dSW) correction to the data using AQEval 
502 function isolateContribution and test the isolated contribution (what remains after we 
503 remove the dWS-associated variance from the time-series) for break-points and/or 
504 break-segments:
505

506 R> #dWS NO2 time-series at 1-hour resolution

507 R> aq.ea2$dws.no2 <- isolateContribution(aq.ea2, "no2")

508 R> #convert the data to 1-day resolution

509 R> aq.ea2.day <- timeAverage(aq.ea2, avg.time="day")

510 R> #break-point test

511 R> quantBreakPoints(aq.ea2.day, "dws.no2",

512 +             ylab="KCL Ealing Acton Town Hall no2 [ug/m3]

513 +             Break-Points, using dSW Signal Isolation")

514 Associated outputs are the break-point plot shown as Figure 9a and the Console 
515 report:

516 Using 1 of 2 suggested breaks: 2

517 2003-01-01 (2002-11-13 to 2003-02-11)
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518 51.03->60.57;9.541 (19%)

519

520 (a) Break-Points

521
522 (b) Break-Segments

523
524 Figure 9: Ealing Acton Town Hall 1998 to 2005 NO2 time-series (a) quantBreakPoints 
525 and (b) quantBreakSegments analyses using simple (hour-of-day, Julian date, wind 
526 speed and wind direction) deseasonalisation and deweathering (dSW) signal isolation.
527

528 R> #break-segment test

529 R> quantBreakSegments(aq.ea2.day, "dws.no2",

530 +             ylab="KCL Ealing Acton Town Hall no2 [ug/m3]

531 +             Break-Segments, using dSW Signal Isolation")
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532 Associated outputs are the break-segment plot shown as Figure 9b and the Console 
533 report:

534 Using 1 of 2 suggested breaks: 2

535 building 3 segments

536 1998-01-01 to 2002-09-09 (1712)

537 60.97->50.08;-10.9 (-17.87%)

538 2002-09-09 to 2002-12-21 (103)

539 50.08->56.65;6.57 (13.12%)

540 2002-12-21 to 2005-12-31 (1106)

541 56.65->59.84;3.195 (5.639%)

542

543 isolateContribution is a general-purpose ‘local’ contribution isolation function.

544 If isolateContribution is only supplied data and pollutant (and data contains date, 
545 pollutant, ws and wd time-series), by default it applies a simple dSW model in the form:

546 [poll] = s1(j.day) + s2(day.hour) + te1(ws, wd) (1)

547 [poll]dsw = ([poll] − [poll]model) + mean([poll]) (2)

548 Where [poll] is the time-series of measurements of interest, typically 
549 concentrations of the pollutant requiring dSW, j.day and day.hour are the 
550 seasonal terms, Julian date (or day-of-year) and hour-of-day, respectively, and 
551 ws and wd are the weather terms, wind speed and wind direction, respectively. 
552 The contribution model (Equation 1) is fitted as a Generalised Additive Model 
553 (GAM) using the mgcv package (Wood 2017, Wood 2021) and thin-film splines 
554 for single input functions, s1 and s2 for day.hour and j.day, respectively, and a 
555 cubic-regression tensor, te1 for the two-input ws and wd term. Finally, the mean-
556 centred residual of the model is reported as the dSW output, [poll]dsw (Equation 
557 2).

558 Here (Figure 9), we again see that single break-point/segment at the end of 2002/start 
559 of 2003, at about the same time as the main break-point in the first example data set. 
560 This indicates that the (hour-of-day, day-of-year, wind speed and wind direction) dSW 
561 corrected NO2 change of the order of 9.5 and 6.6 µg.m−3 (or 19% and 13%) using 
562 break-point and break-segment quantification, respectively.

563 Overly aggressive modelling will most likely remove or distort variance associated with 
564 the change of interest. So, we start with a relatively simple isolateContribution model. 
565 Should you need or want to, options to develop your model using include:

566  Using alternative weather data. In the above example, we use archived 
567 meteorological measurements included in the KCL air quality data archive. 
568 Such data may not be available, may be of poor quality or sparsely available, 
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569 you may have access alternative local data that you feel is more representative 
570 or wish to use an alternative source. Here, one alternative we have used in 
571 previous studies is the National Oceanic and Atmospheric Administration 
572 (NOAA) Integrated Surface Database (ISD), which can be downloaded using 
573 e.g. the R packages rnoaa (Chamberlain 2021) or worldmet (Carslaw 2021).
574  Adding additional weather-related parameters. We would recommend using 
575 wind speed and direction if available and you are applying deweathering 
576 because pollution levels typically associate strongly with these two parameters. 
577 However, other work has indicated that additional meteorological measures, 
578 such as air temperature and rainfall can be helpful additions when 
579 deweathering. The isolateContribution argument deweather can be used to 
580 remove or to change the deweathering terms to the signal isolation.
581  Changing seasonal parameters. Likewise, the deseasonalisation terms can 
582 be removed or changed using the isolateContribution deseason argument. 
583 However, here, it is important to note one distinction between deweathering and 
584 desesonalisation: deweathering is removing variance associated with 
585 meteorological change; deseasonalisation is removing variance of a given 
586 frequency. So, while deseasonalisation will remove some weather–related 
587 variance, especially if more direct measures are not available, it may also 
588 remove some portion of contributions from other sources with near-regular 
589 frequency patterns.
590  Using a background correction (BC). If you have access to pollutant data 
591 from a suitable background site, you can calculate a conventional BC by 
592 subtracting this time-series from your study-site pollutant time-series to produce 
593 a local increment or apply it as a GAM term, .e.g. using the background 
594 argument in isolateContribution. This can be carried out in combination with 
595 dSW, or as a standalone BC by turning off the deseason and deweather 
596 options.
597  Accounting for other known contributions. Where other sources are known 
598 and believed to be significant, it can sometimes be possible to reduce their 
599 influence if activity and/or emissions records are available as similar resolution 
600 time-series. These can, e.g. be added to the signal isolation step using the 
601 isolationContribution add.term argument.
602  Apply an alternative model Users that are familiar with GAMs and mgcv 
603 syntax can use the isolateContribution argument formula to apply alternative 
604 signal isolation models. This overrides all other settings, so expects the 
605 alternative model formulae in full.

606 You can also use signal isolation of your own or produced using other packages.

607 However, when doing any environmental signal isolation, our current recommendation 
608 is to start with the pollutant of interest and no signal isolation and then add signal 
609 isolation as required, e.g. to remove variance from other sources potentially obscuring 
610 the change of interest, or to apportion contributions in cases where the magnitude a 
611 discrete change is expected to be influenced by several factors. In all cases it is most 
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612 likely better to first test any additional inputs to ensure that they are not the potential 
613 source of any new changes observed when they are included in the signal isolation 
614 step.

615 As a simple example of the modification of the signal isolation step, we expanded the 
616 previous dSW to a dSW and BC using NO2 from the nearby AURN Kensington Urban 
617 Background site (KC1) as our background:
618

619 R> #add background site no2 to data

620 R> select(aq.kc1, date, no2) %>%

621 +              rename(bg.no2=no2) %>%

622 +              right_join(aq.ea2, by="date") -> aq.ea2.bg

623 R> #dsw and background subtraction

624 R> aq.ea2.bg$dwsb.no2 <- isolateContribution(aq.ea2.bg,

625 +             "no2", background="bg.no2")

626 R> #convert 1-hour to 1-day

627 R> aq.ea2.bg.day <- timeAverage(aq.ea2.bg, avg.time="day")

628 R> #break-point test

629 R> quantBreakPoints(aq.ea2.bg.day, "dwsb.no2",

630 +             ylab="KCL Ealing Acton Town Hall no2 [ug/m3]

631 +             Break-Points, using dSW and Urban BC Signal Isolation")

632 Associated outputs are the break-point plot shown as Figure 10a and the Console 
633 report:

634 Using 1 of 2 suggested breaks: 2

635 2002-09-13 (2002-08-24 to 2002-09-20)

636 52.78->59.91;7.132 (14%)

637

638 R> #break-segment test

639 R> quantBreakSegments(aq.ea2.bg.day, "dwsb.no2",

640 +             ylab="KCL Ealing Acton Town Hall no2 [ug/m3]

641 +             Break-Segments, using dSW and Urban BC Signal Isolation")

642 Associated outputs are the break-segment plot shown as Figure 10b and the Console 
643 report:

644 Using 1 of 2 suggested breaks: 2

645 building 3 segments
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646 1998-01-01 to 2002-09-14 (1717)

647 57.93->53.14;-4.791 (-8.27%)

648 2002-09-14 to 2002-09-15 (1)

649 53.14->56.32;3.181 (5.987%)

650 2002-09-15 to 2005-12-31 (1203)

651 56.32->59.93;3.614 (6.416%)

652 (a) Break-Points

653
654 (b) Break-Segments

655
656 Figure 10: Ealing Acton Town Hall 1998 to 2005 NO2 time-series (a) quantBreakPoints 
657 and (b) quantBreakSegments analyses using simple (hour-of-day, Julian date, wind 
658 speed and wind direction) deseasonalisation and deweathering (dSW) signal isolation 
659 and background correction (BC) using NO2 data from the Kensington and Chelsea 
660 Urban Background site.

661

662 This expands Equation 1 to:
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663 [poll] = s1(j.day) + s2(day.hour) + te1(ws, wd) + s3(background) (3)

664 Where, s3 is an additional spline term which is used to expand the previous 
665 dSW model to a dSW and BC model using the supplied background time-
666 series.

667 This analysis indicates a dSW and BC NO2 change event, this time more definitely in 
668 late 2002, and a local change (roadside by comparison to urban background) of about 
669 7.1 µg.m-3 or 14% using break-points and 3.2 µg.m-3 or 6% using break-segments.

670

671 4. Summary and Discussion

672 Here, we have introduced the R AQEval package, provided background on the 
673 methodology, and demonstrated and discussed the use of its main functions.

674 We hope this article provides a helpful reference for those wishing to use AQEval to 
675 detect, characterise, and measure discrete changes in air quality time-series. For 
676 those interested in finding out more, further discussion and examples of these 
677 methods are provided in the AQEval package documentation and in associated online 
678 documentation (https://github.com/karlropkins/AQEval). 

679 However, even this brief analysis provides some interesting insights:

680  Comparing the dSW break-point results (Figure 9a and associated reports) with 
681 those from the previous longer time-window analysis (no dSW but h=0.3, Figure 
682 8 and associated reports), we see a NO2 difference of ca. 3.6 µg.m-3 (13.1-9.5 
683 µg.m-3). This suggests that about 27% (3.6/13.1 x 100) of NO2 at this site may 
684 associate with the applied dSW terms. That said, ambient NO2 chemistry is 
685 complex: A range of atmospheric processes drive its secondary production and 
686 degradation, and factors like wind speed and direction can influence pollutant 
687 accumulation in and/or dispersion from a monitoring site. So, it is important not 
688 to interpret this as a classic source, and assign this purely to, e.g., the weather. 
689 Instead it is perhaps more helpful to consider the weather a source/sink 
690 contribution, either increasing or reducing monitor site pollution levels 
691 depending on the prevailing conditions.
692  Similarly, when comparing changes observed with and without BC (cf Figures 
693 9 and 10 and associated reports), we see smaller reductions once the 
694 backgrounds are accounted for: 7.1 µg.m-3 by comparison to 9.5 µg.m-3 and 3.2 
695 µg.m-3 by comparison to 6.6 µg.m-3, for break-point and break-segment 
696 analyses, respectively. Again, we need to be cautious in our interpretation of 
697 this result because it could either reflect larger levels of secondary NO2 at the 
698 background site, or it could indicate an poorly selected background, with a 
699 partial contribution from your change event. However, you could go on with 
700 AQEval to investigate changes at other sites and for other pollutants, and this 
701 just may help you to investigate these questions.
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702 The package and associated research continue to be works in progress. We therefore 
703 recommend that users check package and on-line documentation for news and 
704 updates regarding changes to the package (see also Section C of the Supporting 
705 information). We would also welcome discussion about future options for the methods 
706 and third-party insights on the performance and sensitivity of the methods.

707 Likewise, we would happy to discuss collaborative projects applying the methods to 
708 both novel data sets and also well-understood historical time-series, because 
709 validation does not come from the reporting of a novel result, it comes from the 
710 confirmation of an independently established outcome.

711 Finally, although AQEval was developed as an environmental time-series analysis 
712 tool, other applications are also of interest. For example, with the signal isolation 
713 functions disabled, the BP/S analysis methods have already been applied to traffic 
714 counter records as part of a comparison of discrete changes in NO2 and traffic flows 
715 during the first COVID-19 related lockdown (see e.g. Ropkins and Tate 2021), and this 
716 is just one area of interest we would like to investigate further in future.

717
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859
860 Supporting Information: 
861
862 The results in this paper were obtained using R 4.1.3 and the AQEval 0.4.5 package.
863 R itself and all packages used by AQEval and used in this article are available from 
864 the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/. 
865
866
867 A. AQEval Installation Methods
868
869 From R, the most recent stable release versions of AQEval can be installed from 
870 CRAN using:
871
872 R> # Release version from CRAN
873 R> install.packages("AQEval")
874
875 The developers’ versions of AQEval can be installed using:
876
877 R> # (if you do not have remotes package, install it from CRAN)
878 R> install.packages("remotes")
879
880 R> # developers version from Github 
881 R> remotes::install_github("karlropkins/AQEval")
882
883 An AQEval package bundle (.zip or .tar.gz compressed file containing the package) 
884 can be installed using:
885
886 R> # developers version or other update as .tar.gz file (also using remotes)
887 R> remotes::install_local(file.choose()) # and select the bundle
888
889 B. Data Sources
890
891 Sources for datasets used in this article:
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892
893 R> require(openair)
894 R> require(worldmet)
895 R> require(dplyr)
896
897 R> #1998-2005 data from London Marylebone Road AURN site
898 R> aq.my1 <- importAURN("my1", year=1998:2005) %>%
899 +             select(date, site, code, no2)
900
901 R> #1998-2005 data from Ealing Acton Town Hall KCL site
902 R> aq.ea2 <- importKCL("ea2", year=1998:2005, met=TRUE) %>%
903 +             select(date, site, code, no2, wd, ws)
904
905 R> #1998-2005 data from Kensington and Chelsea KCL site
906 R> aq.kc1 <- importKCL("kc1", year=1998:2005) %>%
907 +             select(date, site, code, no2)
908
909 C. AQEval Package Sources and Documentation
910
911 AQEval package versions:
912
913  Stable release version on CRAN at https://CRAN.R-
914 project.org/package=AQEval. And,
915  Developers’ version and code on GitHub at 
916 (https://github.com/karlropkins/AQEval). 
917
918 Additional documentation:
919
920  The project website is at https://karlropkins.github.io/AQEval/. 
921
922 Further documentation, guidance and news regarding package developments 
923 and updates can all be found here.
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